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1 The setting

We briefly introduce the object we are about to study. Basic definitions are taken from [3].

In a similar way we define cochain complexes in usual topological cohomology we can define in the same
way cochain complexes in group cohomology.

Definition (Cochain complex). Given a discrete group Γ and an abelian group A, the cochain complex
is defined as

Cn(Γ, A) = {f : Γn+1 → A}, Cn
b (Γ, A) = {f : Γn+1 → A|f is bounded}.

What makes a function bounded is the existence of a constant C such that f(γ0, . . . , γn) < C ∀γi ∈ Γ

Definition (Coboundary operator). This operator "raises" the degree of the cochains δ : Cn(Γ, A) →
Cn+1(Γ, A)

δf(γ0, . . . , γn+1) =

n+1∑
i=0

(−1)if(γ0, . . . , γ̂i, . . . , γn+1).

It is straightforward to check δk+1 ◦ δk = 0.

However, if we define directly the cohomology from the above cochain complex, the information encoded
in the structure of the group will be lost, treating the group like a set. For that reason we introduce the
Γ− invariant cochain complex.

Definition (Cochain complex of Γ−invariants). This is the subset of the cochain complex Cn(Γ, A)Γ ⊆
Cn(Γ, A) whose elements fulfill

f(γ0, . . . , γn) = f(γγ0, . . . , γγn) ∀γ ∈ Γ.

This is what endows the cochains with the required structure to properly study a group. For convenience
we will shorten the notation and we will make use of Γ−invariant cochain complex when not specified.

With this in mind we can define now the usual cohomology with the diagram in mind

0 C0(Γ, A) C1(Γ, A) C2(Γ, A) C3(Γ, A) · · ·δ0 δ1 δ2 δ3

Definition (Group Cohomology). We define the group cohomology from the Cochain complex and the

coboundaty operator as Hn(Γ, A) =
ker(δn)

Im(δn−1)
.

This is well defined in both cases, the bounded and the unbounded. We realize that the fact Cn
b (Γ, A) ⊆

Cn(Γ, A) induces a map called comparison map

c : Hn
b (Γ, A) → Hn(Γ, A).

The study of this comparison map is fundamental to understand how boundedness can change the setting
of the problem.

2 Inhomogeneous formulation

To make computations in low degree we usually make use of inhomogeneous complex to transform the
trivial action condition in something easier to work with.

Values of f can be calculated on tuples starting with 1.

f(γ0, . . . , γn) = f(1, γ−1
0 γ1, γ

−1
0 γ2, . . . , γ

−1
0 γn)
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and we let
g1 = γ−1

0 γ1

g2 = γ−1
1 γ2

...
gn = γ−1

n−1γn

⇒ f(γ0, . . . , γn) ↔ f(1, g1, g1g2, . . . , g1g2 · · · gn) := h(g1, g2, . . . , gn).

And this defines a correspondence between the homogeneous and inhomogeneous complexes, which we
denote by C

n
.

It is easy to check that the coboundary operator transforms in the following way

Definition (Inhomogeneous coboundary operator).

δ
n
h(g1, . . . , gn+1) = h(g2, . . . , gn+1) +

n∑
i=1

(−1)ih(g1, . . . , gigi+1, . . . , gn+1) + (−1)n+1h(g1, . . . , gn).

Henceforth we will write h(g1, . . . , gn) when working with inhomogeneous complexes and f(γ0, . . . , γn)
with homogeneous. We forget the bar notation, since could be derived from the context.

Two classical computation follow, the groups H0 and H1:

Proposition. For any discrete group H0(Γ, A) = H0
b (Γ, A) = A.

Proposition. For any discrete group H1(Γ, A) = Hom(Γ, A) and H1
b (Γ,Z) = 0.

We might be surprised by the different result that boundedness gives us on the computation of H1
b , but

this is the consequence of the fact that there are no bounded homomorphisms from Γ to Z or R.

3 Quasimorphisms

Computing H2
b is far more complicated than H0

b and H1
b . There is a classical result that asserts H2 is

in one-to-one correspondence with the isomorphism classes of central extensions of Γ by A. For the case
of bounded cohomology we introduce the idea of quasimorphism.

Definition (Quasimorphisms). Let Γ a group. The space of quasimorphisms is defined as follows

QM(Γ) = {f : Γ → R : ∃C > 0 such that |f(g1) + f(g2)− f(g1g2)| < C ∀g1, g2 ∈ Γ}.

The study of the following map is crucial for the understanding of the relationship between quasimor-
phisms and bounded cohomology of degree 2.

QM(Γ) ker(H2
b (Γ,R) H2(Γ,R))cA

that sends each quasimorphism φ ∈ QM(Γ) to [δ1φ] ∈ H2
b . This is trivially well defined, since δ2◦δ1φ = 0,

in such a way that δ1φ ∈ ker(δ2), and, thus, is mapped to zero in H2(Γ,R). Taking into account the
following diagram:

C1 C2 C3

C1
b C2

b C3
b

δ1 δ2

δ1b δ2b

⇒

{
ker(δ2b ) ⊆ ker(δ2)

Im(δ1b ) ⊆ Im(δ1)

what suggest that there are some coboundaries δ1φ of C1 which are not coboundaries of C1
b . This is the

case of unbounded φ that leads to a quasimorphism (there are a few examples later developed such as
Brook’s or Rolli’s quasimorphisms).
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Thus, we can decompose every quasimorphism that maps to zero under the map A as a sum of homo-
morphism and a bounded function. ker(A) = B(Γ,R) ⊕ Hom(Γ,R). By the surjectivity of the map
finally we have the isomorphism

ker(A : H2
b (Γ,R) → H2(Γ,R)) ∼=

QM(Γ)

Hom(Γ,R)⊕B(Γ,R)
.

4 The free group

We apply now the techniques of bounded cohomology to the study of the free group. We start with the
free group on two elements.

Definition (Free group on two elements). We call F2 = ⟨a, b⟩ the group of reduced words generated by
the alphabet {a, b, a−1, b−1}.

Now we recall that H2(F,R) = 0, and the kernel of the comparison map is the whole space H2
b (F,R),

giving the isomorphism

H2
b (F,R) ∼=

QM(F )

Hom(F,R)⊕B(Γ,R)
.

What means that we can express every nontrivial element [δφ] ∈ H2
b , being φ a quasimorphism which is

not bounded nor a homomorphism.

The main advantage of working with cohomology instead of homology is that cohomology is endowed
with a cup product defined in the following way:

Definition (Cup product). We define the cup product as the map

∪ : Hn(G,R)×Hm(G,R) → Hn+m(G,R)
([f ], [g]) 7→ [f ] ∪ [g]

where (f ∪ g)(g1, . . . , gn, gn+1, . . . , gn+m) := f(g1, . . . , gn) · g(gn+1, . . . , gn+m).

Two main open questions are now natural to ask:

Open Problem. Can we characterise the group H2
b (F,R)?

Open Problem. Let k > 0 and α ∈ Hk
b (F,R) arbitrary. Let φ be a quasimorphism. Is the map

∪ : H2
b (F,R)×Hk

b (F,R) → Hk+2
b (F,R)

([δ1φ], α) 7→ β

trivial? (i.e. β = [0])

5 Known quasimorphisms

Although Brooks, Rolli and ∆−decomposable quasimorphisms are the most well-known quasimorphisms,
we can extend the Brooks quasimorphisms by summing them to form Calegari quasimorphisms.

5.1 Calegari Quasimorphisms

Calegari Quasimorphisms are a generalization of small Brooks quasimorphisms. This type of quasimor-
phisms can be thought of as a weighted sum of small Brooks quasimorphisms

φα :=
∑

w∈N+

αwhw
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where α is an alternating function α : F → R and the sum runs over the set of non-self-overlapping
words.

Definition. Let

κα(1) := sup

(∑
w∈C

|αw|

)
be the supremum over all compatible families. This is an intrinsic characteristic of the function α.

Definition (Calegari Quasimorphisms). We say φα is a Calegari quasimorphism if κα(1) < ∞.

5.2 Classification of Calegari quasimorphisms

In [2] the following containment map is proven.

Cal

l1ind κ(c0)

ΣInd l1Br κ(l1)

wl1Br

ΣBr

Definition (ΣBr quasimorphism). We say φ ∈ ΣBr if it is a finite sum of Brooks quasimorphisms.

Definition (wl1Br quasimorphism). We say φ ∈ wl1Br if∑
w∈N+

|w||αω| < ∞.

We will show that Theorem A (b) proved in [1] for Brooks quasimorphisms can be extended to wl1Br

quasimorphisms.

Theorem. If φα ∈ wl1Br, then [δφα] ∪ [ω] = [0] where ω is a cocycle of non-zero degree.

Proof. We can prove the above statement in the same way Amontova and Bucher did it in Theorem A
(b) [1].

Let η =
∑

w∈N+ ηw, with ηw defined as:

ηw(g, h1, . . . , hk−1) =

m−l+1∑
j=1

χw(xj · . . . · xj+l−1)ω(zj+l(g), h1, . . . , hk−1)

where zj(g) = xj · . . . · xm with g = x1 · . . . · xm.

We define βw := αwhw∪ω+δηω. Now we let β =
∑

w∈N+ βw = φα∪ω+δη =
∑

w∈N+ (αwhw ∪ ω + δηw).
One can check that δβ = (δφα) ∪ ω, and we only need to show that β is bounded.

From the original theorem we know that ∥βw∥ ≤ (|w|−1)|αw|∥ω∥∞, so ∥β∥ ≤
∑

w∈N+((|w|−1)|αw|)∥ω∥∞ <
∞, because φα ∈ wl1Br.
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